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Dynamic Response of an Elastic Plate Strip to a
Moving Line Load

HerBErT REIsMANNF
Martin Company, Baltimore, Md.

The response of an infinite plate strip under an arbitrarily distributed transverse moving
line load is determined. The line of application of the load is perpendicular to the infinite
edges, and the load is assumed to propagate parallel to the infinite edges of the plate at con-
stant speed. The problem is formulated as a boundary value problem within the framework
of the classical small-deflection theory of thin plates, and solutions are obtained in terms of
trigonometric series. It is shown that the shape of the resulting deflection profile of the
plate is strongly dependent upon the speed of propagation of the load as well as the magnitude
of the damping coefficient. In the absence of damping, a denumerable infinity of critical
speeds exists at which deflections become unbounded. In the presence of damping, how-

ever, deflections remain bounded.

Nomenclature

damping coefficient

critical damping coefficient corresponding to nth
barmonic component of load

Eh3/12(1 — »?) = plate flexural rigidity

Young’s modulus

plate thickness

width of infinite plate strip

plate mass per unit area

bending moments per unit length of sections of a
plate perpendicular to z and y axes, respectively

twisting moment per unit length of section of a plate
perpendicular to x axis

intensity of line load

shearing forces parallel to z axis per unit length of
sections of a plate perpendicular to z and v axes,
respectively

time

speed of propagation of load

critical speed corresponding to nth harmonic com-
ponent of load

deflection of plate median surface

Cartesian coordinates of plate

¢/cn. = damping ratio corresponding to nth harmonie
component of load
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= dimensionless, moving Cartesian co-
ordinates of plate

v/vne = speed ratio corresponding to nth harmonic
component of load

Poisson’s ratio

dimensionless wavelength/(27/n) = wavelength ratio
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Introduction

JHEN a.plate is subjected to transverse loads. of con-
“¥¥ stant intensity which move parallél to the surface of
the plate, them the stresses induced in the plate.are dependent
not only upon the magnitude of the Toads, but also strongly
upon their speed of propagation. This phenomenon has
already been investigated for simply supported, rectangular
plates in Refs. 1 and 2, and for the case of a simply supported
rectangular plate resting on an elastic foundation in Ref. 3.
Livesley in Ref. 4 considers the response of an infinite plate on
an elastic foundation to a traveling load. In these four cases
critical speeds of propagation of the load are shown to exist, and
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the effect of damping is neglected. Thus deflections become
unbounded when the load propagates with a speed equal to
a critical speed. In addition, the solution presented in
Ref. 4 is restricted to subecritical speeds.

One of the factors which complicate the phenomenon of
the response of plates to traveling loads is the reflection of
flexural waves from the boundaries of the plate normal to
the direction of propagation of the load. This complication
may be removed by considering solutions for plates which are
infinite in the direction of propagation of the load. Thus it
was with the hope of obtaining better insight into the
mechanism of forced, flexural wave motion in plates that the
present study was carried out.

The basic theory of plates is given in Refs. 5 and 6, which
deal with static considerations. Transverse vibrations of
plates are treated in Refs. 7-10, but none of these references
are concerned with moving loads on plates. 1t is the purpose
of this investigation to predict the response of a thin, simply
supported, infinite plate strip under the action of a transverse,
moving line load. The line of application of the load is
taken perpendicular to the infinite edges, and the load is
assumed to propagate parallel to the infinite edges of the
plate at constant speed.

Formulation and Solution

According to the classical small-deflection theory, the
transverse deflections of the median plane of the plate are
characterized by

Dviw = g (1)

where § and D are the load intensity and flexural rigidity,
respectively. The moments and shears are related to the
deflections w by means of the following equations:

o%w 0%w
=0 (G4 5) @
0w o%w
]l[y= -D <a—y§+va‘x§> (3)
0%
Moy = —M,, = —DA — v) 5207 (4)
0
Qz = ~D g (Viw) (5)
T
be)
Q,=—-D > (V2w) (6)
v
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With particular reference to the dynamical nature of the
problem at hand, we assume that the load intensity ¢ is ob-
tained by the superposition of three distinet quantities: (a)
directly applied transverse forces of intensity ¢, (b) transla-
tional inertia forces of intensity —m(Q%w/0t?), where m is
the mass per unit area of plate, and (c) viscous damping
forces of intensity —e(Ow/0f), where ¢ is the damping co-
efficient. Thus Eq. (1) becomes

4 —
Dvw+mat2+c q (M
In the derivation of Eq. (7) we have neglected the effect of
rotatory inertia of the plate and the inertia of the load. In
addition, all the assumptions of the classical theory of plates
stated in Refs. 5 and 6 apply.

In what follows we shall be concerned with loads which
propagate with constant speed v in the a-direction. It will
be convenient to nondimensionalize the coordinates z and
y, and to describe the response of the plate in a moving co-
ordinate system. This is accomplished by the change of
variables

T — vl T
p-T2zW o, T ®)
l l
which transforms Eq. (7) into
O o Ow | Ow | mlow
oEt 02 on? bn‘* w2D Q&2
‘ cvl® dw i
3D 5? D ¢ ®

The change of variables, Eqs. (8), may be given the follow-
ing physical interpretation: An observer fixed with respect
to the z-y coordinate system will see the distributed load ¢
advance in the direction of the positive z-axis, and to him the
deflection of the plate will appear to be dependent upon =z,
y, and {. However, an observer fixed with respect to the &7
coordinate system will move with the advancing load dis-
tribution, and to him the deflection surface will appear sta-
tionary—i.e.; independent of {, and a function of £ and 7
alone. We note that by neglecting damped transients due
to the starting of the motion, we have made the implicit as-
sumption that the load has been moving for a sufficiently
long period. Thus we shall concentrate on the steady state
dynamical process as characterized by Eq. (9).

We now consider the infinite plate strip —« < £ < «,
0 < 1 < 7, where £ and 7 are dimensionless moving coordi-
nates as characterized by Egs. (8). The moving, transverse
line load is applied along the line £ = 0,0 < 5 < =, and the
motion is in the z-direction as implied by Eqs. (8) (see Fig. 1).
The line load is assumed to be arbitrarily distributed and
characterized by a finite trigonometric series or a Fourier
series. In the analysis that follows we shall work with the
nth harmonic component of the load and its corresponding de-
flection w,, » = 1,2,3, .. .. Any particular case to be con-
sidered subsequently will be obtained by superimposing the
appropriate number of component solutions.

In the unloaded region of the plate ¢ =
to Eaq. (9), we require
Otw, otw, O4w,

o8 T 25gon T ont

0, and according

my? 0w,

‘D 08
cvl® dw,
D df

The boundary conditions along the simply supported edges
are given by

=0 (10)

w.(£0) = 0, (Vwaeo = 0
(11)

w"(sﬂr) = 0; (Vzwn)s,-ﬂ- = 0
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In addition, we require the deflection of the plate to remain
bounded as £ - + .
For convenience and in anticipation of future results we let

_2mm (DY, v oL (m
Ure I \m/ 7" v, 2mn \D

(12)
472n? 12 ¢ cl?
Chp = T (mD) , en = c_nc = 4m—w2n2(mD)1/2
With these notations, Eqs. (12) becomes
dtw, 4w, ek wn 2q 2 OWa
o8 +2b£2bn2+ + 4n2d, or
8n? G”ena =0 (13)

of

In view of the boundary conditions (11), we assume a solution
of the form

wign) = 5 fu(Esinnn (1)

where K, and @, are constants to be determined later. The
form of the coefficient in Eq. (14) is chosen for convenience
and in anticipation of future results. Upon substitution of

Fig. 1 Moving transverse line load

Eq. (14) into Eq. (13) we obtain the ordinary dlfferentlal
equation

df" 2 2 d2f" - 3 @ 4
Zg + 2ni@00— 1) G = 8ntthe, T4 nfu =0 (15)
Assuming f.(§) = e, where N = constant, and substituting

into Eq. (15), we obtain the characteristic equation
A4 2(20.2 — DA2 — 80.ead+1 =0 (16)

The solution of Eq. (16) depends upon the parameters €.
and 8., and is discussed from that point of view in the Appen-
dix. For the present, we shall derive the solution when the
roots are written as

}\1 = —Q + ibl, }\2 = —q — ’Lbl
17)

)\3 =4a + ’I:b2, )\4 a — lbz

where a, b, and b, are positive, real numbers.  Equation
(15) has four independent, solutions. However, we must rule
out solutions which become unbounded when § — =+ .
Consequently, we may write the solution of Eq. (15) as

C faO(E) = emet(C,Orosnbi§ + Co sinnbi£); £ 2> 0
' (18)
Fa®(§) = enat(Cr@cosnbof + Co® sinnbs§); £ <0

where the superscripts 1 and 2 are attached to quiintities
pertaining to the region ahead and behind, respectively, of the
moving load. The C (73, 1 = 1,2; j = 1,2 are constants of
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integration. The deflection, slope, and moment must be
continuous under the load—i.e.,

wn(l)«):n) = wn(Z)(07n) (19)
awn(l) _ aw"(z)
( o¢ >0m a ( o >0,7, (20)
Mzn(l)(oﬂl) = Mzn(Z)(O}n) (21)

The shear force is required to display the discontinuity
lim{Q.,®(£7,m) — Q,P(§*,m)] = pansinnyg  (22)
0

where pa, sinny is the nth harmonic component of the line
load. TUpon substitution of the solution [(14) in conjunc-
tion with (18)] into the transition conditions (19) through
(22), we obtain four linear algebraic equations in four un-
knowns. These equations, when solved, result in

C,0 = 0, =g

b22 — b? + 4a?

1 =
Ca 4b (23)
622 - b12 — 4q2
2 = = -
Cz 4b,

where the quantities K, and @, in Eq. (14) are taken as

_ padd?
T 4D

Q. = 3a* + 20%(26.2 — 1) + 6.2(8.2 — 1) (25)

Combining Egs. (14), (18), and (23), we obtain the solution
for & > 0:

Kn

(24)

w0 (E,n) =

2 -
K, e-"ok [a cosnb,§ + a* = (06w a)
Q by

n

sinnblf] sinny =

K. ot an <
RORE e-"cos(nh & — M) sinng  (26)
where

tang,® = @2 = Oxen/a)]

alh
1/2
by = (20n2—-1+a2+%)
Similarly, for £ < 0 we have the solution
w.P(&n) =
2
ISZ' enat l:a cosnbé — g_—_{—__(@ne—,,/az sinnbgg:l sinny =
Qn b2
L natoos(nbaf — 0. ®)sinny  (27)
QT ¢"%cos(nb, ©.®)sinny
where
2
fanp,® = — [02 + (fa€a/a) ]
aln .
172
by = <2on2—1+a2—?0—;‘fﬁ>

It is shown in the Appendix that b,? is negative for certain
combinations of 8, and e,—i.e., when ¢, > &. In this case
the solution (27) corresponding to £ < 0 becomes complex.

To write it in real form we observe that
(B2)Y2 = 1§ | by, sinni|by| & = 1 sinhn|by| £

cosni|bs| £ = coshn|by| £
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and Eq. (27) becomes

.M (&,m) =

a® + (f.€./0)

gi: enat l:a coSh’n] b2’ f - |b2|

sinhn| by E:I sinny
(28)
When €, = &, b2 = 0 (see the Appendix) and in this case
Eq. (27) assumes the form
w0 = 52 [a (o + 225) g | et sinnn 20

For the particular case of zero damping ¢, = 0 and 8, < 1
we havea = (1 — 0,)V2 b, = by = 8, (see Appendix), and
@.=1— 0,2 Therefore

GO = 0 = (1 — 9,212
1— 6.2

n

0,0 = —(C,® =
and, when £ > 0, we have the solution

w.D(Em) =

1 1 . .

-Kn
9.1 — 0,212
o.)sinng exp[—n(l — 8,)Y2E] (30)

exp[—n(l — 6.2)'2] = cos(nb, & —

where

(1 — 0"2) 1/2

tang, = 9.

and when £ < 0, we have

n

1 1
@ = e — — &
waP(&n) = K, [(1 DL cosnb & 2 s1nn0,.£] X

K'n
P = g cos(nf.£ +

@n)sinny exp[n(l — 0.5'2%] (31)
For the particular case of zero damping ¢, = 0 and 8, > 1,
wehavea = 0,0, = 0,4 (6.2 — 1)V, by = 0, — (8.2 — 1),

and Q, = 6,%(8,2 — 1), as shown in the Appendix. There-
fore

sinng exp[n(l — 9,22 =

00 = (® =0
—0,(0.2 — 1)1?
Q) = —
Cs B, + (6,2 — 1)12
C,» = __—___.._0"(0”2 — D"

01'- — (0n2 — 1)1/2
and when £ > 0, the solution is

-K, .
0n(0n2 — 1)1/2[0n + (0n2 —_ 1)1/2]
sinn([f. + (6.2 — 1)V2]E-sinny  (32)

wD(En) =

For £ <0
-K,
@) = .
Wn (S}T’) 0n(6n2 _ 1)]/2[011 _ (enz . 1)1/2]
sinn(f, — (6.2 — 1)V2]¢-sinny  (33)

The deflection function for the particular limiting case of a
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jJasnuns:
X i I i
\ € =02\€ =03 6 r\-“ 2 0 2 4 6 &
l"=aJ\ \\ \\ a
A EAVA N
VR AN N
. €=
i €ln=1m;\\ . \ (e} g, = 0 (Static) .
£ §n=n.s\
§ TN "o,
€=\ 7/€=0 max
= LI =
(LN / ehind Load
n S T
Y €= Waves in front of Lood 1
. HHH s | o4 | 2 o | 2 | e & |
o w0 Spoed Ratio, 8 20 30 ’ > nd—|
2 .8, \ / L
Fig. 2 Wave length ratio vs speed ratio . // r
. . . . . (b) = 0. ubcritica ee
stationary load (» = 0) is obtained by taking the limit of D 6, = 03 Cubertienl Speed "n
Eqs. (30) and (31) as 8, — 0: "n,
w,M(&n) = K.e™(1 + nfsinny (34)
-1
(2) = nE(1 —
w,2(£n) = K, e®(1 — nfsinny (35) ! L, I .
The static solution, Eqs. (34) and (35), is known and is /1 ~ »lne]
given in Ref. 6. I~ ™~ ~
The moments M, are now computed for the case ¢, = 0
and 8, < 1 by substituting Eqs. (30) and (31) into Eq. (2). (e) g, = 1.5 (Supereritical Speed) — 1
When £ > 0, we obtain "
e8] l 4 w"sf
M, = 4 sinny - max
G Fig.3 Typical deflection profiles, line load, ¢, = 0
1 1 - .
I:—(———i—% cosnf & — ( ) smnang] .
(1 = 6. Ox The moment M., for the particular limiting case of a sta-
pa. 1T+ »)2 (1 — »)2]ve tionary load (v = 0) is obtained by taking the limit of Egs.
exp[—n(l — 0,)Y2¢] = [1 _—y + e ‘ (36) and (37) as 6,— 0

cos(nd.& + gan)-sinm)-exp[—n(l — 0.912£]  (36)

where
1=y (1 -8
tane. = 5 4,
and for £ < 0, we obtain
M(z) -
Panl . 1+ 1—-ywv . ]
- sinny [——(1 EIDTE cosnd & + 7 sinnf &

exp[n(l — 0,1)V2E] =

paal I:(l +»: Q- v)2:|1/2 )
drn [1 — 6.2 0.%

cos(nf.& — @u)sinnn-exp[n(l — 6.H)V2E] (37)
where
1—v (1 — 08,912
1-+v» 0.

To obtain the moments 3 ., for the case e, = Oand 6, > 1 ,
we substitute Eqs. (32) and (33) into Eq. (2). For £ > 0,
we obtain

tang, =

pa.l

) = —
Mo 47n {

6.(0,% — 1)¥2[0, + (8.2 — DV?]
sinn[0,+ (0,2 — 1)V2)&.sinny  (38)

[Bn __|_ (0n2 — 1)1/2]2 _|_ v } )

and when £ < 0, we have
Mow— Pl (0= @ = DVP 4y}
" drn 0.(0.2 — 1)V2{0, — (0.2 — 1)¥/?]

sinn{f, — (0.2 — 1)V2)E-sinny  (39)

M,,® =

e >0 (40)
4

" e [(1 — »)(1 4+ nE) — 2]sinny, £

M,® =

Pl

— = g[(1 — »)(1 — nf) ~ 2] sinny, £ < 0 (41)
4n

These equations can also be obtained direetly from the static
solution, Eqgs. (34) and (35).

Discussion of Results

Component Selutions

In the following discussion the term deflection profile refers
to the trace of the intersection of any plane n = constant,
0 < 7 < w with the median plane of the plate as viewed in the
plane n = constant. A study of the component solutions
obtained reveals that the character of the deflection profile
depends strongly upon the speed ratio 6. and the damping
ratio e,. Fig. 2 shows the variation of wavelength ratio
Q, as a function of the speed ratio 6,, with damping ratio
€. a8 a parameter. The term wavelength ratio is defined as
the ratio of the actual wavelength of the deflection profile to
the (hypothetical) wavelength of the defleetion profile at the
critical speed in an undamped plate. With reference to
Fig. 2, we note that for e, = 0, he wavelengths in front and
behind the load are identical for 6, < 1, but for 6, > 1 the
wavelength in front of the load is smaller than the wavelength
behind it. When damping is introduced (e, > 0), we obtain
different wave lengths in front and behind the load for all
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Fig. 4 Typical deflection profiles, line load, ¢, = 0.2

speed ratios 8., and for a given speed ratio, the wavelength
in front of the load is always smaller than the wavelength
behind the load. This difference increases substantially with
an increase in 0, for 6, > 1. We also note that as 6, — 0,
the wavelength becomes unbounded, and this result is con-
firmed by the known static solution.

There exist combinations of (#,,6.) which give rise to an
“infinite wavelength” behind the load as demonstrated in the
Appendix. For each speed ratio 8,, there exists a value of
€, = €, (denoted by the term ‘“‘secondary critical damping’”)
for which this is true. When €, > &, the wavelength behind
the load is unbounded. Tig. 9 facilitates the determination
of this phenomenon. If the point (6.,¢€.) lies on or above the
curve in Fig. 9 (see Appendix), the wavelength behind the
load will be unbounded. If the point (8.¢,) lies below the
curve, we have an oscillatory deflection profile behind the
load, and the wavelength is bounded. Because of the exist-
ence of an asymptote in Fig. 9, all component solutions will
display infinite wavelength behind the load for all 6, > 0
when e, > 1/2.

Some of the salient features of the deflection profiles ob-
tained from the component solutions are presented in Figs. 3,
4, and 5 for a variety of combinations of speed ratio and
damping ratio. The curves are normalized with respect to
the maximum deflection under an identical static load. For
the static case 8, = 0 (Fig. 3), the deflection is & maximum
under the load and decreases monotonically to zero as £ —
+o. The deflection profile is symmetrical with respect to
the load point in this case. When ¢, = 0,0 < 8., <1 (sub-
critical speed), the maximum deflection still occurs under
the load point, but the deflection profile is given by a damped
sine wave symmetrical about the load point (see Fig. 3b).
In the case of supercritical speed, 6. > 1, and zero damping,
as shown in Fig. 3¢, the deflection profile ceases to be sym-
metrical with respect to the point £ = 0, and the amplitude of
waves in front of the load is smaller than. the amplitude of
waves behind the load. In this case the deflection under the
load is zero for all 8, > 1. We also note that for e, = 0 and
6. = 1 (critical speed), deflections become unbounded.

, Hl .
N |
6 4 2 0 2 4 6 3 K3 -6 4 2 0 2 4 6
e 1 I
| e —
(o) 8, =05 1 ( @6, - 05 ~T
: || -
. J ‘ 7 n_
‘ r Stmux
11 r
! 4 2 o V2 4 6 i ng ]
| e = q
™ / - — | L
|
i L 6 4 -2 0 2 4 6
: /AN
® 8, =10 \/ w, 1] ] ng
—
= ® g, =10 1
wﬂ
v
ns!
max
-1
4 4 2 4 2 4 né| .
Mﬁ :i / 1 -6 :1 -2 i} / 2 4 6
“n —— ng -
“—}f w“sf ‘ ’_——_-_—_/ \-V r
Y max i (c) en =15 wn

HEE T

Fig. 5 Typical deflection profiles, line load, ¢, = 1.0

When slight damping is introduced, &, > €. > 0, the de-
flection profile is a damped sinusoid with amplitude decreas-
ing exponentially with an increase in distance from the load
point (see Fig. 4). In this case, deflections remain bounded
for all #, > 0. Three cases with damping greater than
secondary-critical damping are shown in Fig. 5.

Fig. 6 is a plot of the dynamic amplification of deflection
as a function of speed ratio 8., and Fig. 7 is the corresponding
plot of dynamic amplification of moment M, as a function of
speed ratio ,, both for the particular case of zero damping.
Both graphs are normalized with respect to the corresponding
maximum static values. With reference to these figures, we
note that in the case of supercritical speed 8, > 1, the de-
flection amplification is greater behind the load than in front
of the load, but the moment amplification is greater in front
of the load than behind the load.

25

n
max

0
"static
mox
——

w

n

£<0

R

0 0.5 1.0 1.5 29 25 3.0 3.5
Speed Ratio, 9“

o

Amplitication Factor,

0.5

Fig. 6 Dynamic amplification (deflection) moving line
load, ¢, = 0
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2.5

LM
n
max
M
static
max
n
| ——

Amplification Factor
s
LAl
\4
P4

T~

\

0 0.5 1.0 15 20 25 3.0 35
Speed Ratio, 8,

Fig. 7 Dynamic amplification (moment) moving line
load, ¢, = 0, » = 0.3

Superposition of Component Solutions

In most practical cases, the load distribution is character-
ized by either a finite trigonometric series or a Fourier series,
and to obtain a solution it will be necessary to superimpose a
finite or an infinite number of component solutions. Since
the basic partial differential equation of motion is linear, and
because each component solution satisfies the equation and
the required boundary eonditions, superposition is permissible
and presents no special problems.

As an example, we consider the case of a moving, uni-
formly distributed line load of intensity p. In this case, the
appropriate Fourler sine series expansion is

4p i sinny
p=tp 5 s
T p=135... N

so that o, = 4/an. If we are interested in the solution cor-
responding to £ > 0, e, = 0, then the applicable solution is
given by the appropriate superposition of Eqs. (30) and (32):

wD
I wh(g,m) = ,
X sinn[0, + (0.,* + DV)¢-sinnn
n=1,35,... 1 0.(0.2 — D0, + (0.2 — 1)V?]
i [ cosnbf,£ sinnﬁ,,g:l.
n=N+2,N+4,... (A= 8.5 0n

exp[—n(l — 8.5)"2£]

n4

sinny- (42)
where 6, > 1 in the finite series and 6, < 1 in the infinite
series of Eq. (42). Thus N is the greatest positive odd in-
teger smaller than the quantity (vl/2w)(m/D)Y2. We note
that it is possible that 8, < 1 for all n. In this case the

]
I
+—
€ =5
T Tt
=]
1 o
€ =3 T~
! \n\\
™t
1 (e —— [
° —~— T - ~1_]
N T /%=1 =
] | -
~ €& =! ]
os I € o =
i Tl T
IS P
[T THE=0s e
I e
o/ | €= [ .

0.5 1 15 2 5 3 3.5
Speed Rotio, 8 |

Fig. 8 Solution of characteristic equation (a vs 6,, with
€, as a parameter)
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?n:% (zeﬁ -1+ az)

n

%
2 (4 2 ’
Ez_1.26'"4- e"_en-r]‘

3

Asymptote—

‘n

bad
o

Secondary Criticol Damping,

0 0.5 1.0 15 2.0 25 3.0 35 4.0
Speed Ratio, 8

Fig. 9 Secondary critical damping vs speed ratio

finite series in Kq. (42) is deleted, and only the infinite series
applies.

Appendix: Roots of the Characteristic Equation
The characteristic equation of the fourth degree
M42260,2 — DN — 8060 +1 =0 (43)

can always be written as the product of two quadratic factors
with real coefficients

(A2 4+ 2aX + 6% <)\2 — 2aN + L) =0 (44)

‘82
(see, for instance, Ref. 11). The roots of Eq. (44) are
A= —a=*=ib
(45)
AN = a == th
where
b 2 — ‘82 —_ aZ
‘ (46)
1 :
1)22 = Ez‘ — a2

If, upon expanding Eq. (44), we equate coefficients of like
powers of A to those of Eq. (43) and solve for 8% and 1/8%, we
obtain

B2 = 26,2 — 1+ 2a* + 2—0;6"

4n
1 9pe 14 00— 20
'8 " a

Eliminating 3 from Eqgs. (47), we obtain
as + (26,2 — Dot + 6.2(0.2 — 1)a® — 0.2%,2 = 0 (48)

It is evident that Eq. (48) has at least one non-negative root
a. Thus, we shall (arbitrarily) select ¢ > 0 and compute
the corresponding b, and b, from Eqs. (46) and (47)
201:,671

[

b =202~ 1+ a®+

(49)

27L7L
b22=29n2-1+a2—%

[see Egs. (46) and (47)].

We shall next investigate the dependence of @ upon e, and
#,.. For this purpose we write Eq. (48) in the form
0.%€,2

a?

@+ a)r = (B2 +a) — 5 =0 (50)

Solving for (8.2 + a?), we obtain

ot + 6.9 = 1+ (1 n 40,,25"2)1/2

- (51)
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and the positive square root applies because the quantity
2(a% + 8.?) is non-negative. With reference to Fig. 8, let

0. = rsing
(52)
a = r cosy
wherer > 0,0 < ¥ < n/2.
Introducing the change of variables (52) into Eq. (51), we
obtain

22 =1+ (1 + 4e.? tany) V2 (63)

This equation provides a convenient means for plotting
(implicitly) @ vs 6, with €, > 0 as a parameter, and this plot
is shown in Fig. 8. We note that whene, > 0,r > 1.

We must still discuss the case of zero damping. When
€. = 0and 8, < 1, we have from Eq. (48):

at+ (20,2 — Da*> + 0,20, -~ 1) =0 (54)

sothata = (1 — 0,92 b = by, = *4,, and, from Eq. (51),
r=1

When e, = 0and 8, > 1, we have a = 0 as the required non-
negative root. Assuming a power series in €, for g, about
€, = 0, we have

a=61€n+626nz+...

and substituting this series in Eqs. (48), we obtain a =
€./(0.> — 1)V2 plus terms containing higher powers of e,.
For sufficiently small €, and 8, > 1, we can take ¢ = ¢,/
(8.2 — D2 i

Then Eq. (49) assumes the forms

€,2
bi* =260,2 — 1+ g2 —1 + 26.(8.2 — 1)1
(55)
€7
2o~ 99,2 — . 20.(0,2 — 1)V
b,? =~ 20 1+0n2—1 0.(0 1)
Taking the limit of Egs. (55) as e, — 0 we obtain
bl = :i:[gn + (0n2 - 1)1/2]
(56)

bZ = iwn - (enz - 1)1/2]

We shall next investigate the sign of b2 and b2. If we
introduce the transformation, Eqgs. (52), into the first of Eqgs.
(49), we obtain

b?=1r2— 144 r2sin?y + 2¢tany >r2 —1 >0

because r? > 1. Hence, b,? is nonnegative, and it is positive
for 8, > 0, and vanishes for §, = 0. However, the quantity
bs? may be positive, negative, or zero, and it is desirable to
find the value of ¢, = &, as a function of 8, for which b,2 =

ATAA JOURNAL

If we set 5,2 = 0 in the second of Eq. (49) and eliminate ¢,
from it with the help of Eq. (48) we obtain

3at 4+ 202(20,2 — 1) — 1 =0 (57)
The nonnegative, real root of Eq. (57) is
- 1 — 20,24 2(0.4 — 8,2 + 12z
a6 =4a= (58)

3

and therefore

= b= g (02— 14 @) =
20,2 — 1 + (8. — 0,2 + DM
30,
1 — 20,2 + 2(0,4 — 6,2 + D
[ 5 ] (59)

When 6, =0,a = 1,and e, = 0. When §,— «,a—1/(24.,),
and &,— 1/2. A graph of Eq. (59) is shown in Fig. 9. When
€, and 6, satisfy (59), b2 = 0. When e, < &, 0> > 0, and
when e, > &, b2 < 0.
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