
354 AIAA JOURNAL VOL. 1, NO. 2

Dynamic Response of an Elastic Plate Strip to a
Moving Line Load

HERBERT REISMANN*
Martin Company, Baltimore, Md.

The response of an infinite plate strip under an arbitrarily distributed transverse moving
line load is determined. The line of application of the load is perpendicular to the infinite
edges, and the load is assumed to propagate parallel to the infinite edges of the plate at con-
stant speed. The problem is formulated as a boundary value problem within the framework
of the classical small-deflection theory of thin plates, and solutions are obtained in terms of
trigonometric series. It is shown that the shape of the resulting deflection profile of the
plate is strongly dependent upon the speed of propagation of the load as well as the magnitude
of the damping coefficient. In the absence of damping, a denumerable infinity of critical
speeds exists at which deflections become unbounded. In the presence of damping, how-
ever, deflections remain bounded.
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Nomenclature

damping coefficient
critical damping coefficient corresponding to nth

harmonic component of load
£7i3/12(l - v2) = plate flexural rigidity
Young's modulus
plate thickness
width of infinite plate strip
plate mass per unit area
bending moments per unit length of sections of a

plate perpendicular to x and y axes, respectively
twisting moment per unit length of section of a plate

perpendicular to x axis
intensity of line load
shearing forces parallel to z axis per unit length of

sections of a plate perpendicular to x and y axes,
respective!}'

time
speed of propagation of load
critical speed corresponding to nth harmonic com-

ponent of load
deflection of plate median surface
Cartesian coordinates of plate
c/Cnc = damping ratio corresponding to nth harmonic

component of load
X/7~ V [ = dimensionless, moving Cartesian co-

7r2// > ordinates of plate
v/Vnc = speed ratio corresponding to nth harmonic

component of load
Poisson's ratio
dimensionless wavelength/(27r/n) = wavelength ratio

+

Introduction

WHEN a plate is subjected to transverse loads, of con-
stant intensity which move parallel to the surface of

the plate, then the stresses induced in the plate.are dependent
not only upon the magnitude of the loads, but also strongly
upon their speed of propagation. This phenomenon has
already been investigated for simply supported, rectangular
plates in Refs. 1 and 2, and for the case of a simply supported
rectangular plate resting on an elastic foundation in Ref. 3.
Livesley in Ref. 4 considers the response of an infinite plate on
an elastic foundation to a traveling load. In these four cases
critical speeds of propagation of the load are shown to exist, and

the effect of damping is neglected. Thus deflections become
unbounded when the load propagates with a speed equal to
a critical speed. In addition, the solution presented in
Ref. 4 is restricted to subcritical speeds.

One of the factors which complicate the phenomenon of
the response of plates to traveling loads is the reflection of
flexural waves from the boundaries of the plate normal to
the direction of propagation of the load. This complication
may be removed by considering solutions for plates which are
infinite in the direction of propagation of the load. Thus it
was with the hope of obtaining better insight into the
mechanism of forced, flexural wave motion in plates that the
present study was carried out.

The basic theory of plates is given in Refs. 5 and 6, which
deal with static considerations. Transverse vibrations of
plates are treated in Refs. 7-10, but none of these references
are concerned with moving loads on plates. It is the purpose
of this investigation to predict the response of a thin, simply
supported, infinite plate strip under the action of a transverse,
moving line load. The line of application of the load is
taken perpendicular to the infinite edges, and the load is
assumed to propagate parallel to the infinite edges of the
plate at constant speed.

Formulation and Solution

According to the classical small-deflection theory, the
transverse deflections of the median plane of the plate are
characterized by

DV*w = q (1)

where q and D are the load intensity and flexural rigidity,,
respectively. The moments and shears are related to the
deflections w by means of the following equations:
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Mxy = -Myx = -D(l - v)

f = -D — (V2u>)

Q, = -D

(2)

(3)
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With particular reference to the dynamical nature of the
problem at hand, we assume that the load intensity q is ob-
tained by the superposition of three distinct quantities: (a)
directly applied transverse forces of intensity g, (b) transla-
tional inertia forces of intensity — ra(d2w/d£2), where m is
the mass per unit area of plate, and (c) viscous damping
forces of intensity — c(di0/d£), where c is the damping co-
efficient. Thus Eq. (1) becomes

(7)

In the derivation of Eq. (7) we have neglected the effect of
rotatory inertia of the plate and the inertia of the load. In
addition, all the assumptions of the classical theory of plates
stated in Refs. 5 and 6 apply.

In what follows we shall be concerned with loads which
propagate with constant speed v in the ^-direction. It will
be convenient to nondimensionalize the coordinates x and
i/, and to describe the response of the plate in a moving co-
ordinate system. This is accomplished by the change of
variables

TTpc — tjQ
5 ~ Z '

which transforms Eq. (7) into

(8)

^7 + 2 + I O TA "N. 5-O7T2Z)
cvl*

7T4D
q (9)

The change of variables, Eqs. (8), may be given the follow-
ing physical interpretation: An observer fixed with respect
to the x-y coordinate system will see the distributed load q
advance in the direction of the positive #-axis, and to him the
deflection of the plate will appear to be dependent upon x,
y, and t. However, an observer fixed with respect to the £,77
coordinate system will move with the advancing load dis-
tribution, and to him the deflection surface will appear sta-
tionary — i.e., independent of t, and a function of £ and 77
alone. We note that by neglecting damped transients due
to the starting of the motion, we have made the implicit as-
sumption that the load has been moving for a sufficiently
long period. Thus we shall concentrate on the steady state
dynamical process as characterized by Eq. (9).

We now consider the infinite plate strip — oo < £ < oo t
0 ^ 77 ̂  TT, where £ and 77 are dimensionless moving coordi-
nates as characterized by Eqs. (8). The moving, transverse
line load is applied along the line £ = 0, 0 ^ 77 ̂  TT, and the
motion is in the ^-direction as implied by Eqs. (8) (see Fig. 1).
The line load is assumed to be arbitrarily distributed and
characterized by a finite trigonometric series or a Fourier
series. In the analysis that follows we shall work with the
nth harmonic component of the load and its corresponding de-
flection wn, n = 1,2,3, . . . . Any particular case to be con-
sidered subsequently will be obtained by superimposing the
appropriate number of component solutions.

In the unloaded region of the plate q = 0, and according
to Eq. (9), we require

n

~

—— —— n = 0 (10)3 U ;

The boundary conditions along the simply supported edges
are given by

(11)

In addition, we require the deflection of the plate to remain
bounded as £ -> ± co.

For convenience and in anticipation of future results we let

vnc

(12)
47T27l2—nc —

With these notations, Eqs. (12) becomes

?\£4 "" >v£2 >v^2 ~"~ ^^4 ~"~ n ?\£2

cl2

0 (13)

In view of the boundary conditions (11), we assume a solution
of the form

rr
(14)

where Kn and Qn are constants to be determined later. The
form of the coefficient in Eq. (14) is chosen for convenience
and in anticipation of future results. Upon substitution of

Fig. 1 Moving transverse line load

Eq. (14) into Eq. (13) we obtain the ordinary differential
equation ;

din + n*fn = -0 (15)

Assuming /„(£) = en^, where X = constant, and substituting
into Eq. (15), we obtain the characteristic equation

- 1)X2 - + 1 = 0 (16)

The solution of Eq. (16) depends upon the parameters cw
and On and is discussed from that point of view in the Appen-
dix. For the present, we shall derive the solution when the
roots are written as

= — a + ibij

4 = a — ib-2
(17)

where a, 61, and 62 are positive, real numbers. Equation
(15) has four independent solutions. However, we must rule
out solutions which become unbounded when £ —>• d= oo.
Consequently, we may write the solution of Eq. (15) as

C2
(1) 0

(18)
E); ? < 0

where the superscripts 1 and 2 are attached to quantities
pertaining to the region ahead and behind, respectively, of the
moving load. The (7^, i = 1,2; j = 1,2 are constants of
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integration. The deflection, slope, and moment must be
continuous under the load—i.e.,

H. REISMANN

and Eq. (27) becomes

(19) "»w(^) =

TT r

AIAA JOURNAL

nv ** A, v 5« A, ^
The shear force is required to display the discontinuity

lim[Qa;n
(2)(£~~,T7) — Qzn^K?^1?)] = pan sinnry (22)

where pan sum 77 is the nth harmonic component of the line
load. Upon substitution of the solution [(14) in conjunc-
tion with (18)] into the transition conditions (19) through
(22), we obtain four linear algebraic equations in four un-
knowns. These equations, when solved, result in

C2

where the quantities

Qn == 3a4 +
Combining Eqs. (14)
for ? ^ 0:

Kn r
-̂. t/ 1 to L/Ub/l'l/l

1
&!«

where

4&i (23)
™ 62

2 - V - 4a2

Kn and Qn in Eq. (14) are taken as

K PO>nl ff\A\

2a2(20n2 - 1) + 0n2(0n2 - 1) (25)
, (18), and (23), we obtain the solution

a2 - (0n6n/a) ̂ ^ "1 4^
&! ° * J ol ni?

» \ -. /0 ^ COSITT/OIC tp n ) sm?7<T7 ( ̂ u)) j l /2

'- (0n€n/a)]

20 6 \1/2

>0 2 . . 1 .1 . «2 _L- n n 1

e-^s Ct COSIl/t | W2 1 ^ j _ I S1I1IJ

When 6n = in, 62
2 = 0 (see the Appendix)

Eq. (27) assumes the form

w (2)(t _ ̂  ["a ^.^2 +
 e»*»\ nt"l (

' Qn L V 0 / J

For the particular case of zero damping en
we have a = (1 - 0n

2)1/2, 61 = &2 = 0n (see
Qn = i - 0n2. Therefore

-j _ /3 2

0n

and, when ^ > 0, we have the solution

r i 1 1
Kn [(i -ew*™** ' 0nG1M^cJG1

exp[ n(l 0n2)1/2?] - " . •
f /n^l — Vn ) '

^n)sinm7 exp[—n(l -

where
Q _ ^ 2^1/2

and when ^ ^ 0, we have

r i i

rr
&ILI.H/II tJ^jJ L/t'\-1- Vn J ^J /j /-. /3 2M/

^n)sin?ii7 exp[n(l -

.74 | C»2| ^ Sin/tT]

(28)

and in this case

,nat Sinn7] (29)

= 0 and dn<l
Appendix), and

- 0n2)1/2£] (30)

_ 0Ji)l/2£] (3^

Similarly, f or £ ^ 0 we have the solution

a2 + (0n6n/a)

For the particular case of zero damping en = 0 and 0» > 1,
we have fl = 0, &i = 0n + (0n2 - 1)1/2, 62 = 0n - (0tt

2 - 1)1/2,
and Qn = 0n2(0n2 — 1), as shown in the Appendix. There-
fore

(27)

where
[a2 + (0n€n/a)

It is shown in the Appendix that 62
2 is negative for certain

combinations of 0n and en—i.e., when en ^ in. In this case
the solution (27) corresponding to J ^ 0 becomes complex.
To write it in real form we observe that

(&22)i/2 = i \b*\, sinm| 62| ̂  = i sinhn| 62| £

cosm| 62| £ = coshn| 62| £

0n + (0n2 -

(2) = ~^n(0n2 ~ 1

0n ~ (0n2 ~

and when £ ^ 0, the solution is

0n(0n
2 - l)1/2[0n + (0n2 '

sinr?[0n+ (0n
2 -

______________-Kn

0n(0n2 ~ l)1/2[0n - (0n2 - '-

sinn[0n - (0n2 -

sinnT? (32)

For ̂  0

(33)

The deflection function for the particular limiting case of a
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stationary load (v = 0) is obtained by taking the limit oJ
Eqs. (30) and (31) as On-+ 0:

WnW&ii) = Kn e~nt(l + nf)sinni? (34;

The static solution, Eqs. (34) and (35), is known and is
given in Ref . 6.

The moments MXn are now computed for the case en = C
and en < 1 by substituting Eqs. (30) and (31) into Eq. (2)
When £ > 0, we obtain

F
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(36)

where

- V (1 - 0n2)1/2

Fig. 3 Typical deflection profiles, line load, en = 0

The moment MXn for the particular limiting case of a sta-
tionary load (v = 0) is obtained by taking the limit of Eqs.
(36) and (37) as <?„-*(>

- 2]smnr,, £ } 0 (40)
1 + v On

and for £ < 0, we obtain

- p^e**[(l ~ ^)(1 ~ wf) - 2] si

r /i A 2M/2.1 »exp[n(l - ^2)1/2?] = ——

(37)

where
1 - v (1 - 0.2)1

To obtain the moments MXn for the case en = 0 and 6n > 1,
we substitute Eqs. (32) and (33) into Eq. (2). For f ^ 0,
we obtain

and when ^ ^ 0, we have

[*,- - (^»2 -

(38)

(39)

0 (41)

These equations can also be obtained directly from the static
solution, Eqs. (34) and (35).

Discussion of Results

Component Solutions

In the following discussion the term deflection profile refers
to the trace of the intersection of any plane r] = constant,
0 < 77 < TT with the median plane of the plate as viewed in the
plane 77 = constant. A study of the component solutions
obtained reveals that the character of the deflection profile
depends strongly upon the speed ratio 0« and the damping
ratio en. Fig. 2 shows the variation of wavelength ratio
On as a function of the speed ratio 0n, with damping ratio
e« as a parameter. The term wavelength ratio is defined as
the ratio of the actual wavelength of the deflection profile to
the (hypothetical) wavelength of the deflection profile at the
critical speed in an undamped plate. With reference to
Fig. 2, we note that for en = 0, he wavelengths in front and
behind the load are identical for 6n < 1, but for 6n > 1 the
wavelength in front of the load is smaller than the wavelength
behind it. When damping is introduced (en > 0), we obtain
different wave lengths in front and behind the load for all
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(a) 9 = 0.5

(b) 0n = 1.00

(c)

Fig. 4 Typical deflection profiles, line load, en = 0.2

speed ratios 9n, and for a given speed ratio, the wavelength
in front of the load is always smaller than the wavelength
behind the load. This difference increases substantially with
an increase in 6n for 6n > 1. We also note that as Bn -*- 0,
the wavelength becomes unbounded, and this result is con-
firmed by the known static solution.

There exist combinations of (0»,eB) which give rise to an
"infinite wavelength" behind the load as demonstrated in the
Appendix. For each speed ratio 9n, there exists a value of
en = in (denoted by the term "secondary critical damping")
for which this is true. When en ^ en the wavelength behind
the load is unbounded. Fig. 9 facilitates the determination
of this phenomenon. If the point (0n,€») lies on or above the
curve in Fig. 9 (see Appendix), the wavelength behind the
load will be unbounded. If the point (0n,en) lies below the
curve, we have an oscillatory deflection profile behind the
load, and the wavelength is bounded. Because of the exist-
ence of an asymptote in Fig. 9, all component solutions will
display infinite wavelength behind the load for all 0n ^ 0
when en ^ 1/2.

Some of the salient features of the deflection profiles ob-
tained from the component solutions are presented in Figs. 3,
4, and 5 for a variety of combinations of speed ratio and
damping ratio. The curves are normalized with respect to
the maximum deflection under an identical static load. For
the static case Bn = 0 (Fig. 3), the deflection is a maximum
under the load and decreases monotonically to zero as £ —>
± oo. The deflection profile is symmetrical with respect to
the load point in this case. When en = 0, 0 ^ 6n < 1 (sub-
critical speed), the maximum deflection still occurs under
the load point, but the deflection profile is given by a damped
sine wave symmetrical about the load point (see Fig. 3b).
In the case of supercritical speed, 6n > 1, and zero damping,
as shown in Fig. 3c, the deflection profile ceases to be sym-
metrical with respect to the point £ = 0, and the amplitude of
waves in front of the load is smaller than the amplitude of
waves behind the load. In this case the deflection under the
load is zero for all On > 1. We also note that for en = 0 and
Sn = 1 (critical speed), deflections become unbounded.

, " 0-5

-1 —

Fig. 5 Typical deflection profiles, line load, en — 1.0

When slight damping is introduced, en > en > 0, the de-
flection profile is a damped sinusoid with amplitude decreas-
ing exponentially with an increase in distance from the load
point (see Fig. 4). In this case, deflections remain bounded
for all 6n ^ 0. Three cases with damping greater than
secondary-critical damping are shown in Fig. 5.

Fig. 6 is a plot of the dynamic amplification of deflection
as a function of speed ratio 6n, and Fig. 7 is the corresponding
plot of dynamic amplification of moment MXn as a function of
speed ratio 6n, both for the particular case of zero damping.
Both graphs are normalized with respect to the corresponding
maximum static values. With reference to these figures, we
note that in the case of supercritical speed 0» > 1, the de-
flection amplification is greater behind the load than in front
of the load, but the moment amplification is greater in front
of the load than behind the load.

Speed Ratio, 9

Fig. 6 Dynamic amplification (deflection) moving line
load, en ~ 0
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Fig. 7 Dynamic amplification (moment) moving line
load, en = 0, v = 0.3

Superposition of Component Solutions

In most practical cases, the load distribution is character-
ized by either a finite trigonometric series or a Fourier series,
and to obtain a solution it will be necessary to superimpose a
finite or an infinite number of component solutions. Since
the basic partial differential equation of motion is linear, and
because each component solution satisfies the equation and
the required boundary conditions, superposition is permissible
and presents no special problems.

As an example, we consider the case of a moving, uni-
formly distributed line load of intensity p. In this case, the
appropriate Fourier sine series expansion is

_ 4p^ A sinnry
P ~ * n=i,3,5, . . . n

so that an = 4/7m. If we are interested in the solution cor-
responding to £ ^ 0, en = 0, then the applicable solution is
given by the appropriate superposition of Eqs. (30) and (32);

N

E $inn[6n + (0B
2 + - siring

E
cosnflng

(1 _ 0n2)l/2

sinn??- exp[-n(l -- /An.(42)

where On > 1 in the finite series and dn < 1 in the infinite
series of Eq. (42). Thus N is the greatest positive odd in-
teger smaller than the quantity (vl/2ir)(m/D)1/2. We note
that it is possible that 6n < 1 for all n. In this case the

Fig. 8 Solution of characteristic equation (o vs 0H9 with
en as a parameter)

20n

1 - 2 0 ,••'»(<-*•¥i

Fig. 9 Secondary critical damping vs speed ratio

finite series in Eq. (42) is deleted, and only the infinite series
applies.

Appendix: Roots of the Characteristic Equation

The characteristic equation of the fourth degree

X4 + 2(20n
2 - 1)X2 - S6n€n\ + 1 = 0 (43)

can always be written as the product of two quadratic factors
with real coefficients

(X2 + 2aX + - 2aX + - = 0

(see, for instance, Ref. 11). The roots of Eq. (44) are

X = —a d= ibi
X = a ± ibi

where

(44)

(45)

(46)

If, upon expanding Eq. (44), we equate coefficients of like
powers of X to those of Eq. (43) and solve for 02 and 1//32, we
obtain

20n6n

a

28nen
(47)

f- = 26n* - 1 + 2a2 -/32 a
Eliminating ft from Eqs. (47), we obtain

a6 + (20n
2 - l)a4 + 0n2(0n

2 - l)a2 - 0n
2en

2 = 0 (48)

It is evident that Eq. (48) has at least one non-negative root
a. Thus, we shall (arbitrarily) select a ^ 0 and compute
the corresponding 61 and 62 from Eqs. (46) and (47)

= 20n
2 - 1 + a2 +

= 20n
2 - 1 + a2 - :

2dnen

(49)

[see Eqs. (46) and (47)].
We shall next investigate the dependence of a upon en and

Bn. For this purpose we write Eq. (48) in the form

(0«2 + «2)2 - (On

Solving for (0n
2 + a2), we obtain

2(a* + «„*) = 1

0«2€«2

a2) - ̂  = 0

1/2

(50)

(51)
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and the positive square root applies because the quantity
2(a2 + 0n

2) is non-negative. With reference to Fig. 8, let
Bn = r

(52)
a = r cos;/'

where r ^ 0, 0 $ \f/ ^ Tr/2.
Introducing the change of variables (52) into Eq. (51), we

obtain

This equation provides a convenient means for plotting
(implicitly) a vs 6n with en > 0 as a parameter, and this plot
is shown in Fig. 8. We note that when e» ̂  0, r ^ 1.

We must still discuss the case of zero damping. When
€„ = 0 and dn ^ 1, we have from Eq. (48):

a4 + (20n
2 - l)a2 + 0n

2(0n2 - 1) = 0 (54)

so that a = (1 - 0n
2)1/2; &i = &2 = ±0«, and, from Eq. (51),

r = 1.
When en = 0 and 0n > 1, we have a = 0 as the required non-

negative root. Assuming a power series in en for a, about
en = 0, we have

If we set &2
2 = 0 in the second of Eq. (49) and eliminate en

from it with the help of Eq. (48) we obtain
3a4 + 2a2(20«2 - 1) - 1 = 0

The nonnegative, real root of Eq. (57) is
0n

2 + 2(0n
4 - 6n

2 +a = a = —

and therefore

- (20,2 - 1 + a2) =

20n
2 - 1 + (0n4 - 0n2 H

30n

|~1 - 20n
2 + 2(0n

4 - 0n
2

(57)

(58)

U/2

J (59)

When0n = 0, a = 1, and i« = 0. When 0n-^ oo,a^l/(20n),
and in — * 1/2. A graph of Eq. (59) is shown in Fig. 9. When
ett and dn satisfy (59), 62

2 = 0. When en < €„, 62
2 > 0, and

when en > e», 62
2 < 0.

and substituting this series in Eqs. (48), we obtain a =
€TO/(0n2 — 1)1/2 plus terms containing higher powers of en.
For sufficiently small en and dn > 1, we can take a ̂  c»/
(0n2 - 1)1/2.

Then Eq. (49) assumes the forms

^ 20n
2 - 0n(0TC

2 - I)1

(55)
62

2 ̂  20n
2 - 1 + /_ - 20n(0n

2 -

Taking the limit of Eqs. (55) as en -*• 0 we obtain

h = ± [0 n + (0n2 - 1)1/2]

62 = ±[0n - (0n2 - 1)1/2]

We shall next investigate the sign of 6i2 and 62
2. If we

introduce the transformation, Eqs. (52), into the first of Eqs.
(49), we obtain

(56)

= r* - 1 + r2 sin2!/' + > r2 - 1

because r2 ^ 1. Hence, &i2 is nonnegative, and it is positive
for dn > 0, and vanishes for 6n = 0. However, the quantity
&2

2 may be positive, negative, or zero, and it is desirable to
find the value of en = in as a function of 6n for which 62

2 = 0.
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